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“More data beats clever algorithms, 

but better data beats more data”

Peter Norvig
Director of Research @ Google

Andrew Ng
Founder of DeepLearning.AI

“Coming up with features is difficult, time-consuming 

requires expert knowledge. 
“Applied ML” is basically feature engineering”



Outline
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 Machine Learning workflow

 Feature Engineering

 Biosignal Analysis: Domain knowledge

• Graph representations

 Target Application #1: Detection of epileptic seizures (:: exploit statistics)

• Alpha-stable models

• Graph filtering

 Target Application #2: Classification of NPSLE patients (:: exploit recurrence)

• Recurrence quantification analysis

 Conclusions



ML workflow
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The dream…

Raw data Dataset Model Task



ML workflow
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The reality…

Raw data FEATURES ML-ready Dataset TaskModel



Feature engineering (FE)
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“FE is the process of turning raw data into

features that better represent the underlying 
problem to the models, resulting in improved 

model accuracy on unseen data”

• FE is difficult since extracting features from signals requires 
deep domain knowledge

• Finding the best features fundamentally remains an 
iterative process, even if we apply automated methods



Feature engineering (FE)
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FE encompasses one or more of the following steps:



Feature engineering (FE)
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Manual vs Automated Feature Extraction

• Manual: generate features that are relevant for a given problem (e.g. 
mean of a signal window); Good understanding of the background or 
domain is a big plus

• Automated: use specialized algorithms or deep networks to extract 
features automatically from signals; Useful to move quickly from raw 
data to developing ML algorithms

Images vs Time Series Feature Extraction

• Images: it has been largely replaced by the first layers of deep networks

• Time series: it remains the first challenge that requires significant 
expertise



Feature extraction for time series
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• Feature extraction identifies the most discriminating characteristics in 
signals, which a ML/DL algorithm can more easily consume

• ML/DL training directly with raw signals often yields poor results because 
of the high data rate and information redundancy

• Z-score
• Scaling
• Remove outliers
• Data imputation
• Fix input errors

• Statistical

• Recurrent
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EEG signal ensembles Graph representation

Impulsive noise

Dynamic connectivity

Biosignal Analysis: Domain knowledge
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Alpha-Stable 
Graph Filtering

Recurrence 
Quantification 

Analysis

Impulsive noise Dynamic connectivity

Biosignal Analysis: Domain knowledge
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Target App #1
Detection of epileptic seizures  
[Joint work w/ Dr. Anastasia Pentari]



Impulsive noise
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• EEG signals are often corrupted by impulsive noise (e.g. electronic 
equipment, subject motion, etc.) (ref. [1])

• Denoising is a critical issue; significant “peaky” patterns must be preserved

• Noise part is often characterized by non-Gaussian (heavy-tailed) statistics

• Existing methods:
• Per-signal filtering (Wavelet-based, ICA-based, etc.)
• Better adapt to Gaussian noise statistics

• Exploit graph structure of EEG signal to account for intra-/inter-channel 
dependencies  Graph filters
• L2-based formulation (2nd order moments)



Graph representation of EEG signals
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• Signal model w/ additive observation noise

Data matrix

i-th electrode’s 
signal

# electrodes

# samples/electrode

Noiseless data matrix Noise term



Graph representation of EEG signals
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• Graph representation

• Correlation matrix A (descriptor of brain’s functional connectivity)

v1

v2

vN

e1

e2 eL

Adjacency matrix
(capture interrelations among the nodes)

Weighted undirected 
network

Unweighted undirected 
network

Thresholding



Alpha-stable models
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• Powerful tool in accurately modelling impulsive phenomena (e.g. medical 
imaging, communications, finance, etc.)

• Lack of closed-form expressions for the pdf (except for Gaussian, Cauchy 
and Lévy)

• Modelling signal statistics via symmetric alpha-stable (SaS) distributions

Model parameters

characteristic exponent

dispersion

location



Alpha-stable models
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• Examples of SaS distributions

• Max Likelihood estimation of model parameters; reliable, tightest possible 
confidence intervals (ref. [2])

Gaussian

Cauchy



Alpha-stable models
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• All moments of order p < α exist; Fractional lower order moments (FLOMs)

• Quantify degree of dependence between two SaS variables X, Y, via the 
covariation (analogue of covariance)

Discrete case: FLOM-based covariation estimator

,



Alpha-stable models
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• FLOM-based adjacency matrix (non-negative, symmetric)

• Note: selection of an appropriate FLOM order, p, is critical towards better 
adapting to the underlying degree of impulsiveness

• Calculate p as a function of α, by minimizing the std of the FLOM-based 
covariation estimator (ref. [3])
• Convention: the optimal p value is the mean over all channels



Graph filtering as Lp-regularized optimization
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• Existing formulation: L2-optimization regularized by graph total variation 
(ref. [4])

• Limitation: 2nd order moments inappropriate for SaS models

Data fidelity term Smoothness term



Graph filtering as Lp-regularized optimization
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• Our scope: Suppress the effects of heavy-tailed impulsive noise  Employ 
Lp (quasi)norms (p < 2); direct relation with FLOMs

• Challenge: Highly non-convex problem; singularity of gradient

Data fidelity term Smoothness term

𝑋 𝑥𝑡 𝐱



Graph filtering as Lp-regularized optimization

22

• Use Lp,ϵ approximation of Lp (quasi)norm
𝑁

• Final implementation: joint iterative reweighted least squares (IRLS) & Lp,ϵ

• Better preserves both low- and high-amplitude EEG samples



Graph filtering as Lp-regularized optimization
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IRLS

Lp,ϵ



Experimental evaluation
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• Test case 1: Synthetic noise of varying impulsiveness added to “noise-free” 
EEG ensembles
 32-channel EEGs

 𝛼 ∈ {1.1: 0.3: 2}, 𝛾 = 1

 100 Monte Carlo runs; results averaged over all channels and MC runs

 Performance metrics

,



Experimental evaluation
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• Test case 1: Synthetic noise of varying impulsiveness added to “noise-free” 
EEG ensembles
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Experimental evaluation
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• Test case 2: Filtering of raw data followed by a classification task
 32-channel EEGs; ground truth (noise-free) signals are unknown

 15 “normal” subjects (non-epileptic), 15 “abnormal” subjects (epileptic) 

 Non-overlapping windows of length 256 are selected for each subject

 3 filtering methods: “WT”, “L2”, “Lp,ϵ”

 5 features: {mean, std, mean(±10% ∙ max_ampl), min_ampl, max_ampl}

 kNN classifier (2/3 training, 1/3 testing subjects); majority voting to identify the 
dominant class of each testing subject’s windows

WT L2 Lp,ϵ

db8 b = 0.01 b = 0.1

2-level ε = 0.01

Imax = 10

Model parameters



Experimental evaluation
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• Test case 2: Filtering of raw data followed by a classification task

A Original WT L2 Lp,ϵ

- 50% 50%

Correlation 60%

Covariation 90%

Classification accuracy
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Target App #2
Classification of NPSLE patients 
[Joint work w/ Prof. Akis Simos (Evolutionary Neuropsychology) and Dr. Anastasia Pentari]



Brain functional connectivity
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• Brain function is highly dynamic  Assessing functional 
associations in neurophysiological activity between two or 
more brain regions is challenging

• Associations as evidence of functional connectivity (FC) 
between regions

• fMRI studies: measure temporal variations in brain activity

• Limitations: non-stationary behavior of brain signals is 
not accounted for; predictability of the signal recorded in 
one brain region is not captured from the signal recorded 
in other regions 

• Hypothesis: brain signals are characterized by the 
phenomenon of recurrence, i.e., similar situations of a 
dynamic system should evolve in a similar manner



Clinical test case
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• Neuropsychiatric systemic lupus erythematosus (NPSLE): disorder that is 
characterized by a variety of neuropsychiatric symptoms in the absence of 
remarkable brain injuries

• Idea: capture recurrent dynamic characteristics of rs-fMRI time series, which 
could serve as complementary indices of functional connectivity

• We adopt a Region-of-Interest (ROI) approach focusing on abnormal dynamic 
connectivity between 16 frontoparietal regions (eight in each hemisphere)

• Participants: 45 patients diagnosed with NPSLE (Rheumatology outpatient 
clinic, University Hospital of Heraklion), 35 age-matched and gender-matched 
healthy volunteers



Recurrence quantification analysis
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Develop advanced techniques for extracting and characterizing the 
inherent complex dynamic structures apparent in scientific data

Recurrence is a fundamental feature of nonlinear dynamical systems 
It is a time the trajectory returns to a location it has visited before

Visualize and analyze recurrences to understand and characterize 
the dynamics of complex nonlinear systems



Recurrence quantification analysis
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• Recurrence Plot (RP)

 Depicts the (local) neighborhood structure

 Captures time indices at which  phase space trajectories return to a neighborhood

 Visualize recurrences based on a binary recurrence matrix

Original time series States (Phase Space)

Time-Delay 
Embedding



Recurrence quantification analysis
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• Recurrence Plot (RP)

Critical Parameters

m Embedding dimension

τ Delay

N ( = n-(m-1)τ ) Number of states

States (Phase Space)

Binary 
Recurrence 

Matrix

Time

T
im

e



Recurrence quantification analysis
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• Selection of embedding parameters

Inaccurate choice of m, τ, ε can hinder the discovery of low-dimensional 
dynamics or produce false positive indication of chaotic structure

Original time series

Average Mutual 
Information

False Nearest 
Neighbors

Estimate radius ε

τ = 1st min of AMI

m = 1st min of FNN (%)

ε ≈ c%∙(PS diameter)

ε ≤ 5∙σnoise●
●
●



Cross recurrence plot (CRP)
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• Study and quantify the interaction of two distinct systems due to coupling

• Estimate time-synchronization profiles and detect co-movements

• Analyze dependencies between two distinct systems using CRP; Visualize 
times at which a state in one system occurs simultaneously in the second

CR is not necessarily square (in 
general N ≠ M)

If embedding parameters differ, 
use the higher embedding



Properties of (C)RP
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• Several linear and curvilinear structures appear in (C)RPs; Give hints about the 
time evolution of the high-dimensional phase space trajectories

• (C)RPs applied on short and non-stationary data

• Large-scale and small-scale structures

White noise
(uncorrelated data)

Harmonic oscillation
(2 frequencies)

Logistic map
(chaotic data + linear trend)

AR process



Recurrence quantification analysis (RQA)
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• Enhance the visual interpretation of (C)RPs by quantifying small-scale 
patterns with appropriate measures of complexity

• (C)RQA: nonlinear data analysis method, which quantifies the number and 
duration of recurrences of a (pair of) dynamical system(s) occurring in its 
(their) phase space trajectory

• (C)RQA measures: categorized according to the structures they are based 
on (e.g. diagonal, vertical lines); depend on threshold ε



RQA measures
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Based on recurrence density

Recurrence Rate (RR) RR for CRP (CC)



RQA measures
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Based on diagonal lines

Histogram of diagonal lines of length l :

Determinism (DET)

Measure of determinism 
(or predictability) of a 

system

Avg diagonal length (L) Longest diagonal (Lmax) Divergence (DIV)

Measures average time 
that two trajectory 

segments are close (mean 
prediction time)

The faster the trajectory 
segments diverge, the

shorter are the diagonal 
lines, thus Lmax

The faster the trajectory 
segments diverge, the 

higher is the value of DIV



RQA measures
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Based on diagonal lines

Histogram of diagonal lines of length l :

Measure of RP complexity w.r.t. 
diagonal lines (e.g. ENTR is low for 

uncorrelated processes)

Entropy (ENTR) Trend (TREND)

Measures non-stationarity in terms of 
recurrence point density of the 

diagonals parallel to LOI, as a function 
of time distance t between these 

diagonals and the LOI



CRQA-based feature extraction
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• 6 CRQA measures (features) are selected: RR, DET, L, Lmax, ENTR, Vmax

• Relative sensitivity of CRQA features in differentiating NPSLE patients vs 
healthy volunteers is compared against: 

 Nodal RQA measures (per ROI) 

 Conventional static FC metric (zero-order Pearson correlation between two 
ROIs (total of 120 unique connections for 16 ROIs) 



Classification performance
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• SVM classifier

FE method Precision Recall F1 score

CRQA-based FC 0.98 0.94 0.96

RQA-based FC 0.91 0.90 0.90

Static FC 0.74 0.78 0.76



Conclusions & Key remarks
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• Feature Engineering unlocks hidden insights: most improvement will 
probably come from thinking carefully what we put into our models

• This can be (semi-)automated but still one of the true arts in Data Science

• No amount of complex modeling can compensate for poor-quality data; 
Feature engineering is the first line of defense to enhance data quality

• Domain knowledge is a powerful ally in practice

• Dimensionality reduction is vital; Feature engineering not only adds 
valuable attributes but also helps reduce dimensionality (it isn’t just 
about computational efficiency; it’s about reducing noise, overfitting, and 
making models more interpretable)
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