

Feature Engineering for Graph-based Analysis of Recurrent Behavior in Biosignal Ensembles

Dr. George Tzagkarakis

Foundation for Research and Technology-Hellas Institute of Computer Science

XAI-TS Workshop 2023 Turin, 18 September 2023

"More data beats clever algorithms, but better data beats more data"

Peter Norvig Director of Research @ Google

"Coming up with features is difficult, time-consuming requires **expert knowledge**.

"Applied ML" is basically feature engineering"

Andrew Ng Founder of DeepLearning.Al

Outline

- Machine Learning workflow
- Feature Engineering
- Biosignal Analysis: Domain knowledge
 - Graph representations
- Target Application #1: Detection of epileptic seizures (:: exploit statistics)
 - Alpha-stable models
 - Graph filtering
- Target Application #2: Classification of NPSLE patients (:: exploit recurrence)
 - Recurrence quantification analysis
- Conclusions

The dream...

The reality...

Raw data

FEATURES

ML-ready Dataset

Model

Task

Feature engineering (FE)

"FE is the process of turning raw data into features that **better represent** the underlying problem to the models, resulting in improved model accuracy on unseen data"

FE is difficult since extracting features from signals requires **deep domain knowledge**

Finding the best features fundamentally remains an **iterative process**, even if we apply automated methods

Feature engineering (FE)

FE encompasses one or more of the following steps:

Feature engineering (FE)

Manual vs Automated Feature Extraction

- Manual: generate features that are relevant for a given problem (e.g. mean of a signal window); Good understanding of the background or domain is a big plus
- **Automated:** use specialized algorithms or deep networks to extract features automatically from signals; Useful to move quickly from raw data to developing ML algorithms

Images vs Time Series Feature Extraction

- **Images:** it has been largely replaced by the first layers of deep networks
- **Time series:** it remains the first **challenge** that requires significant expertise

Feature extraction for time series

- Feature extraction identifies the most **discriminating characteristics** in signals, which a ML/DL algorithm can more easily consume
- ML/DL training directly with raw signals often yields poor results because of the **high data rate** and **information redundancy**

Biosignal Analysis: Domain knowledge

Biosignal Analysis: Domain knowledge

Dynamic connectivity

Alpha-Stable Graph Filtering Recurrence Quantification Analysis

Target App #1 Detection of epileptic seizures

[Joint work w/ Dr. Anastasia Pentari]

Impulsive noise

• EEG signals are often corrupted by **impulsive** noise (e.g. electronic equipment, subject motion, etc.) (ref. [1])

- Denoising is a critical issue; significant "peaky" patterns must be preserved
- Noise part is often characterized by non-Gaussian (heavy-tailed) statistics
- Existing methods:
 - Per-signal filtering (Wavelet-based, ICA-based, etc.)
 - Better adapt to Gaussian noise statistics
- Exploit graph structure of EEG signal to account for intra-/inter-channel dependencies ⇒ Graph filters
 - L2-based formulation (2nd order moments)

Graph representation of EEG signals

• Signal model w/ additive observation noise

Data matrix
$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N] \in \mathbb{R}^{N \times K}$$
 # samples/electrode
i-th electrode's signal # electrodes

$$\mathbf{X} = \mathbf{S} + \mathbf{W}$$
Noiseless data matrix

Graph representation of EEG signals

Graph representation

• Correlation matrix **A** (descriptor of brain's functional connectivity)

- Powerful tool in accurately modelling impulsive phenomena (e.g. medical imaging, communications, finance, etc.)
- Lack of closed-form expressions for the pdf (except for Gaussian, Cauchy and Lévy)
- Modelling signal statistics via **symmetric alpha-stable** (SaS) distributions

$$\mathbf{X} = \mathbf{S} + \mathbf{W}$$

$$h(x; \alpha) = \frac{1}{\pi} \int_0^\infty \cos(xt) e^{-t^\alpha} dt$$

Model parameters					
$\alpha \ \in \ (0,2]$	characteristic exponent				
$\gamma > 0$	dispersion				
$\delta \in \mathbb{R}$	location				

• Examples of SaS distributions

• Max Likelihood estimation of model parameters; reliable, tightest possible confidence intervals (ref. [2])

• All moments of order *p* < *α* exist; **Fractional lower order moments** (FLOMs)

$$X \sim f_{\alpha}(\gamma, \delta = 0) \implies \mathbb{E}\{|X|^{p}\} = \left(C(p, \alpha) \cdot \gamma\right)^{p}, \quad 0
$$\left(C(p, \alpha)\right)^{p} = \frac{\Gamma\left(1 - \frac{p}{\alpha}\right)}{\cos\left(\frac{\pi}{2}p\right)\Gamma(1 - p)}$$$$

• Quantify degree of dependence between two SaS variables *X*, *Y*, via the **covariation** (analogue of covariance)

$$\begin{split} [X,Y]_{\alpha} &= \frac{\mathbb{E}\{XY^{< p-1>}\}}{\mathbb{E}\{|Y|^{p}\}}\gamma_{Y}^{\alpha} \\ z^{} &= |z|^{a}\mathrm{sign}\(z\) \end{split} \end{split} \text{Discrete case: FLOM-based covariation estimator} \\ \end{split}$$

• FLOM-based adjacency matrix (non-negative, symmetric)

$$\mathbf{A} = \frac{|\mathbf{C}_{\text{FLOM}}| + |\mathbf{C}_{\text{FLOM}}^T|}{2}$$

- **Note**: selection of an appropriate FLOM order, *p*, is critical towards better adapting to the underlying degree of impulsiveness
- Calculate p as a function of α , by minimizing the std of the FLOM-based covariation estimator (ref. [3])
 - **Convention**: the optimal *p* value is the mean over all channels

α	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	$n \leq \alpha/2$
p_{opt}	0.52	0.56	0.58	0.61	0.64	0.69	0.72	0.76	0.81	0.88	0.98	$p \gtrsim \alpha/2$

 Existing formulation: L2-optimization regularized by graph total variation (ref. [4])

• Limitation: 2nd order moments inappropriate for SaS models

• **Our scope**: Suppress the effects of heavy-tailed impulsive noise \Rightarrow Employ Lp (quasi)norms (p < 2); direct relation with FLOMs

$$\mathbb{E}\left\{|\boldsymbol{X}|^{p}\right\} \simeq \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} |\boldsymbol{x}_{t}|^{p} = \lim_{N \to \infty} \frac{1}{N} \|\boldsymbol{x}\|_{p}^{p}$$
$$\hat{\mathbf{S}} = \operatorname*{argmin}_{\mathbf{N} \times K} \left\{\frac{1}{2} \|\mathbf{S} - \mathbf{X}\|_{p}^{p} + \frac{1}{2} b \|\mathbf{S} - \mathbf{AS}\|_{p}^{p}\right\}$$

• Challenge: Highly non-convex problem; singularity of gradient

• Use Lp, ϵ approximation of Lp (quasi)norm $||\mathbf{x}||_{p,\epsilon}^p = \sum_{j=1}^N (|x_j|^2 + \epsilon)^{p/2}$

$$\hat{\mathbf{S}} = \underset{\mathbf{S} \in \mathbb{R}^{N \times K}}{\operatorname{argmin}} \left\{ \underbrace{\frac{1}{2} \| \mathbf{S} - \mathbf{X} \|_{p,\epsilon}^{p} + \frac{1}{2} b \| \mathbf{S} - \mathbf{AS} \|_{p,\epsilon}^{p}}_{Q_{3}} \right\}$$

- Final implementation: joint iterative reweighted least squares (IRLS) & Lp, ϵ
 - Better preserves both low- and high-amplitude EEG samples

- 1: Inputs: X, A, I_{max} , b, ε
- 2: Outputs: S
- 3: Initialization: $S^{(0)} = X + \varepsilon$
- 4: for t = 1: I_{max} do 5: for k = 1:K do 6: $\mathbf{r} = \mathbf{S}(:, k)^{(t)} - \mathbf{X}(:, k)$ 7: $\mathbf{w} = |\mathbf{r} + \varepsilon|^{(p-2)/2}$ 8: $\mathbf{D} = \operatorname{diag}(\mathbf{w})$ IRLS 9: $\mathbf{S}(:, k)^{(t)} = ((\mathbf{D}^2 + b(\mathbf{I} - \mathbf{A})^H(\mathbf{I} - \mathbf{A}))^{-1}\mathbf{D}^2)\mathbf{X}(:, k)$ 10: end for Lp, ϵ 11: $\mathbf{S}^{(t+1)} = \mathbf{S}^{(t)} + (\nabla^2 Q_3(\mathbf{S}^{(t)}))^{-1} \nabla Q_3(\mathbf{S}^{(t)})$ 12: end for 13: $\hat{\mathbf{S}} = \mathbf{S}^{(Imax)}$

- **Test case 1**: Synthetic noise of varying impulsiveness added to "noise-free" EEG ensembles
 - 32-channel EEGs
 - $\alpha \in \{1.1: 0.3: 2\}, \gamma = 1$
 - 100 Monte Carlo runs; results averaged over all channels and MC runs
 - Performance metrics

$$SER(\mathbf{s}, \hat{\mathbf{s}}) = 10 \log_{10} \left(\frac{\|\mathbf{s}\|_2^2}{\|\mathbf{s} - \hat{\mathbf{s}}\|_2^2} \right) \qquad SSIM(x, y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$
$$c_1 = (k_1 L)^2$$
$$L = 100 , k_1 = k_2 = 0.05$$
$$c_2 = (k_2 L)^2$$

 Test case 1: Synthetic noise of varying impulsiveness added to "noise-free" EEG ensembles

- Test case 2: Filtering of raw data followed by a classification task
 - 32-channel EEGs; ground truth (noise-free) signals are unknown
 - 15 "normal" subjects (non-epileptic), 15 "abnormal" subjects (epileptic)
 - Non-overlapping windows of length 256 are selected for each subject
 - 3 filtering methods: "WT", "L2", "Lp,ε"
 - 5 features: {mean, std, mean(±10% · max_ampl), min_ampl, max_ampl}
 - kNN classifier (2/3 training, 1/3 testing subjects); majority voting to identify the dominant class of each testing subject's windows

Model parameters

WT	L2	Lp,e
db8	<i>b</i> = 0.01	<i>b</i> = 0.1
2-level		<i>ε</i> = 0.01
		$I_{max} = 10$

• **Test case 2**: Filtering of raw data followed by a **classification** task

Classification accuracy

Α	Original	WT	L2	Lp,e
-	50%	50%		
Correlation			60%	
Covariation				90%

Target App #2 Classification of NPSLE patients

[Joint work w/ Prof. Akis Simos (Evolutionary Neuropsychology) and Dr. Anastasia Pentari]

Brain functional connectivity

- Brain function is highly dynamic

 ⇒ Assessing functional associations in neurophysiological activity between two or more brain regions is challenging
- Associations as evidence of **functional connectivity** (FC) between regions
- fMRI studies: measure temporal variations in brain activity
- Limitations: non-stationary behavior of brain signals is not accounted for; predictability of the signal recorded in one brain region is not captured from the signal recorded in other regions
- **Hypothesis**: brain signals are characterized by the phenomenon of **recurrence**, i.e., similar situations of a dynamic system should evolve in a similar manner

Clinical test case

- Neuropsychiatric systemic lupus erythematosus (NPSLE): disorder that is characterized by a variety of neuropsychiatric symptoms in the absence of remarkable brain injuries
- **Idea**: capture **recurrent** dynamic characteristics of rs-fMRI time series, which could serve as complementary indices of functional connectivity
- We adopt a Region-of-Interest (ROI) approach focusing on abnormal dynamic connectivity between 16 frontoparietal regions (eight in each hemisphere)
- Participants: 45 patients diagnosed with NPSLE (Rheumatology outpatient clinic, University Hospital of Heraklion), 35 age-matched and gender-matched healthy volunteers

Develop advanced techniques for extracting and characterizing the inherent complex dynamic structures apparent in scientific data

Recurrence is a fundamental feature of nonlinear dynamical systems It is a time the trajectory returns to a location it has visited before

Visualize and analyze recurrences to understand and characterize the dynamics of complex nonlinear systems

- Recurrence Plot (RP)
 - Depicts the (local) neighborhood structure
 - Captures time indices at which phase space trajectories return to a neighborhood
 - Visualize recurrences based on a binary recurrence matrix

• Recurrence Plot (RP)

Critical Parameters				
т	Embedding dimension			
τ	Delay			
$N(=n-(m-1)\tau)$	Number of states			

$$\mathbf{R}_{i,j} = \Theta \left(\varepsilon - d(\mathbf{x}_i, \mathbf{x}_j) \right) \quad i, j = 1, \dots, N$$
$$\Theta(n) = \begin{cases} 1, & \text{if } n \ge 0 \\ 0, & \text{if } n < 0 \end{cases} \xrightarrow{\mathbf{R}_{i,j}(\varepsilon)} = \begin{cases} 1, & d(\mathbf{x}_i, \mathbf{x}_j) \le \varepsilon \\ 0, & \text{otherwise} \end{cases} \xrightarrow{\mathbf{O}}$$

• Selection of embedding parameters

Inaccurate choice of m, τ , ε can hinder the discovery of low-dimensional dynamics or produce false positive indication of chaotic structure

Cross recurrence plot (CRP)

- Study and quantify the interaction of two distinct systems due to coupling
- Estimate time-synchronization profiles and detect co-movements
- Analyze dependencies between two distinct systems using CRP; Visualize times at which a state in one system occurs simultaneously in the second

$$\mathbf{CR}_{i,j}(\varepsilon) = \Theta (\varepsilon - \|\mathbf{x}_i - \mathbf{y}_j\|_p) \quad i = 1, \dots, N, \ j = 1, \dots, M$$

CR is not necessarily square (in general $N \neq M$)

If embedding parameters differ, use the *higher embedding*

Properties of (C)RP

- Several linear and curvilinear structures appear in (C)RPs; Give hints about the time evolution of the high-dimensional phase space trajectories
- (C)RPs applied on short and non-stationary data

(2 frequencies)

• Large-scale and small-scale structures

(chaotic data + linear trend)

White noise (uncorrelated data)

- Enhance the visual interpretation of (C)RPs by quantifying small-scale patterns with appropriate measures of complexity
- (C)RQA: nonlinear data analysis method, which quantifies the number and duration of recurrences of a (pair of) dynamical system(s) occurring in its (their) phase space trajectory
- (C)RQA measures: categorized according to the structures they are based on (e.g. diagonal, vertical lines); depend on threshold ε

RQA measures

Based on recurrence density

Recurrence Rate (**RR**)

RR for CRP (CC)

$$RR(\varepsilon) = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{R}_{i,j}(\varepsilon)$$

$$CC(\varepsilon) = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{CR}_{i,j}(\varepsilon)$$

RQA measures

Based on diagonal lines

Histogram of diagonal lines of length
$$l: P(\varepsilon, l) = \sum_{i=1}^{N} \sum_{j=1}^{N} (1 - \mathbf{R}_{i-1,j-1}(\varepsilon)) (1 - \mathbf{R}_{i+l,j+l}(\varepsilon)) \prod_{k=0}^{l-1} \mathbf{R}_{i+k,j+k}(\varepsilon)$$
Determinism (DET)Avg diagonal length (L)Longest diagonal (Lmax)Divergence (DIV) $DET = \frac{\sum_{l=l_{min}}^{N} l P(l)}{\sum_{l=1}^{N} l P(l)}$ $L = \frac{\sum_{l=l_{min}}^{N} l P(l)}{\sum_{l=l_{min}}^{N} P(l)}$ $L_{max} = \max_{i=1,...,N_l} \{l_i\}$ $DIV = \frac{1}{L_{max}}$ Measure of determinism
(or predictability) of a
systemMeasures average time
that two trajectory
segments are close (mean
prediction time)The faster the trajectory
segments diverge, the
shorter are the diagonal
lines, thus LmaxThe faster the value of DIV

RQA measures

Based on diagonal lines

Histogram of diagonal lines of length
$$l$$
: $P(\varepsilon, l) = \sum_{i=1}^{N} \sum_{j=1}^{N} (1 - \mathbf{R}_{i-1,j-1}(\varepsilon)) (1 - \mathbf{R}_{i+l,j+l}(\varepsilon)) \prod_{k=0}^{l-1} \mathbf{R}_{i+k,j+k}(\varepsilon)$

Entropy (ENTR)

Trend (TREND)

diagonals and the LOI

 $ENTR = -\sum_{l=l_{min}}^{N} p(l) \ln (p(l))$

Measure of RP complexity w.r.t. diagonal lines (e.g. ENTR is low for uncorrelated processes)

$$TREND = \frac{\sum_{t=1}^{\tilde{N}} \left(t - \frac{\tilde{N}}{2}\right) \left(RR_t - \overline{RR_t}\right)}{\sum_{t=1}^{\tilde{N}} \left(t - \frac{\tilde{N}}{2}\right)^2} RR_t} = \frac{1}{N-t} \sum_{i=1}^{N-t} R_{i,i+t}$$

Measures non-stationarity in terms of recurrence point density of the diagonals parallel to LOI, as a function of time distance *t* between these

40

CRQA-based feature extraction

- 6 CRQA measures (features) are selected: RR, DET, L, Lmax, ENTR, Vmax
- Relative sensitivity of CRQA features in differentiating NPSLE patients vs healthy volunteers is compared against:
 - Nodal RQA measures (per ROI)
 - Conventional static FC metric (zero-order Pearson correlation between two ROIs (total of 120 unique connections for 16 ROIs)

Classification performance

• SVM classifier

FE method	Precision	Recall	F1 score
CRQA-based FC	0.98	0.94	0.96
RQA-based FC	0.91	0.90	0.90
Static FC	0.74	0.78	0.76

Conclusions & Key remarks

- Feature Engineering unlocks **hidden insights**: most improvement will probably come from thinking carefully what we put into our models
- This can be (semi-)automated but still one of the true arts in Data Science
- No amount of complex modeling can compensate for poor-quality data; Feature engineering is the first line of defense to enhance **data quality**
- **Domain knowledge** is a powerful ally in practice
- Dimensionality reduction is vital; Feature engineering not only adds valuable attributes but also helps **reduce dimensionality** (it isn't just about computational efficiency; it's about reducing noise, overfitting, and making models more interpretable)

THANKS FOR WATCHING!

Get in Touch

gtzag@ics.forth.gr

N. Plastira 100, GR70013 Heraklion, Crete

+30 2810 391753

(in)

 \succ

 \bigotimes

https://bit.ly/3VkUWYx

References

- [1] S. Supriya *et al.*, "Analyzing EEG signal data for detection of epileptic seizure: Introducing weight on visibility graph with complex network feature," *in Proc. 27th Australasian Database Conf.*, 2016.
- [2] J. Nolan, "Numerical calculation of stable densities and distribution functions," *Commun. Statist.-Stoch. Models*, vol. 13, pp. 759–774, 1997.
- [3] G. Tzagkarakis *et al.*, "Compressive sensing using symmetric alpha-stable distributions for robust sparse signal reconstruction," *IEEE Trans. Signal Process.*, vol. 67, no. 3, pp. 808–820, 2019.
- [4] S. Chen *et al.*, "Signal denoising on graphs via graph filtering," *IEEE Global Conf. Signal & Inf. Process.*, Atlanta, GA, pp. 872–876, 2014.
- [5] E. A. Allen *et al.*, "Tracking whole-brain connectivity dynamics in the resting state," *Cerebral Cortex*, vol. 24, pp. 663–676, 2014.
- [6] S. S. Menon and K. A. Krishnamurthy, "Comparison of static and dynamic functional connectivities for identifying subjects and biological sex using intrinsic individual brain connectivity," *Sci. Rep. 9*, 5729, 2019.
- [7] M. Bianciardi *et al.*, "Model-free analysis of brain fMRI data by recurrence quantification," *Neuroimage*, vol. 37, no. 2, pp. 489–503, 2007.
- [8] N. Marwan and J. Kurths, "Cross recurrence plots and their applications," *Math. Physics Research at the Cutting Edge*, pp. 101–139, 2004.